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Abstract
The advent of a miniaturized DNA sequencing device with a high-throughput
contextual sequencing capability embodies the next generation of large scale
sequencing tools. The MinION™ Access Programme (MAP) was initiated by
Oxford Nanopore Technologies™ in April 2014, giving public access to their
USB-attached miniature sequencing device. The MinION Analysis and
Reference Consortium (MARC) was formed by a subset of MAP participants,
with the aim of evaluating and providing standard protocols and reference data
to the community. Envisaged as a multi-phased project, this study provides the
global community with the Phase 1 data from MARC, where the reproducibility
of the performance of the MinION was evaluated at multiple sites. Five
laboratories on two continents generated data using a control strain of 

 K-12, preparing and sequencing samples according to aEscherichia coli
revised ONT protocol. Here, we provide the details of the protocol used, along
with a preliminary analysis of the characteristics of typical runs including the
consistency, rate, volume and quality of data produced. Further analysis of the
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22consistency, rate, volume and quality of data produced. Further analysis of the
Phase 1 data presented here, and additional experiments in Phase 2 of E. coli
from MARC are already underway to identify ways to improve and enhance
MinION performance.

 
This article is included in the Nanopore analysis
channel.
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Introduction
The idea of using nanopores as biosensors was suggested by sev-
eral groups starting in the 1990s (patent by Church et al., submitted 
1995, published 1998; Kasianowicz et al., 1996). Investiga-
tors documented that ionic current passing through a nanopore 
depends on the identity of nucleic acid bases interacting with and 
transiting the nanopore (Akeson et al., 1999; Derrington et al., 
2010; Manrao et al., 2011; Wallace et al., 2010). Nanopores were 
also found able to resolve the order of bases in nucleic acid mol-
ecules (Akeson et al., 1999; Bayley et al., 2006; Laszlo et al., 2014; 
Song et al., 1996). A final key step leading to sequencing was reduc-
tion of DNA translocation speed through the nanopore using enzy-
matic control (e.g., polymerase) to feed the nucleic acid strand to the 
pore, base-by-base, on a millisecond time scale (Cherf et al., 2012; 
Lieberman, 2010). Oxford Nanopore Technologies (https://www.
nanoporetech.com) was founded in 2005 to translate these proof-
of-concept studies into a commercial third-generation sequencing 
device. The announcement of the MinION, a device that can detect 
bases of a single-stranded DNA (ssDNA) molecule that passes 
through a nanopore with no theoretical limits on read length (except 
those introduced during sample preparation), was met with enthusi-
asm at the Advances in Genome Biology and Technology (AGBT) 
meeting in 2012 (Check Hayden, 2012; Eisenstein, 2012). Inde-
pendent beta-testing of the MinION device began in April 2014 with 
the start of the MinION Access Programme (MAP) (https://www.
nanoporetech.com/community/the-minion-access-programme) 
involving over 1,000 laboratories. The first publications appeared 
in late 2014 and early 2015 (Ammar et al., 2015;  Ashton et al., 
2015; Greninger et al., 2015; Jain et al., 2015; Karlsson et al., 2015; 
Kilianski et al., 2015; Laver et al., 2015; Loman et al., 2015; 
Mulley & Hargreaves, 2015; Quick et al., 2014; Urban et al., 2015; 
Wang et al., 2015) and these provided a first glimpse of the per-
formance characteristics and limitations of the device at that time, 
as well as potential applications.

The MinION is the smallest high-throughput sequencing platform 
available to date: a 90g device, 10 cm in length, that is able to 
sequence individual molecules of DNA with a single-use flow cell. 
To enable sequencing of both strands, a library is constructed from 
double-stranded DNA (dsDNA) with a protocol similar to that used 
for short-read, second-generation platforms. The library prepara-
tion chemistries (SQK–MAP005 and SQK–MAP005.1) used in this 
study, contain two different adapters that are ligated to the DNA 
(Figure 1A). The first, the ‘leader adapter’, consists of two oligos 
with partial complementarity that form a Y-shaped structure once 
annealed. The second, the ‘hairpin adapter’, is a single oligo with 
internal complementarity to form a hairpin structure. Both adapters 
in the sequencing kit used for this study are preloaded with ‘motor 
proteins’ that mediate the movement of DNA through the pore. 
Another function of the adapters is to guide the DNA fragments 
to the vicinity of pores via binding to tethering oligos with affinity 
for the polymer membrane (Figure 1B). Sequencing begins at the 
single-stranded 5’ end of the leader adapter (Figure 1C). Once the 
complementary (double-stranded) region of the leader adapter is 
reached, the motor protein loaded onto the leader adapter unzips 
the dsDNA, allowing the first strand of the DNA fragment, the 
‘template’, to be passed into the nanopore one base at a time, while 
the sensor measures changes in the ionic current. After reaching the 
hairpin adapter, an additional protein, the ‘hairpin protein’, allows 

the complementary strand of DNA to pass through the nanopore in 
a similar fashion. The current MinION flow cell has 512 channels, 
each connected to 4 wells which may each contain a nanometer-scale 
biological pore (nanopore) embedded in an electrically-resistant 
membrane bilayer (Figure 1D). Each channel provides data from 
one of the four wells at a time, the order of use defined by the allo-
cation of wells to well-groups during an initial ‘mux scan’ (File S2 
Glossary), allowing up to 512 independent DNA molecules to be 
sequenced simultaneously.

When a voltage is applied across the membrane, an ion current 
flows through the nanopore. The translocation of ssDNA through 
the nanopore causes a drop in the current that is characteristic of 
the bases in contact with the pore at that time (Figure 1E, Laszlo 
et al., 2014). A sensor measures the current in the nanopore sev-
eral thousand times per second (at 3,000Hz in this study), the data 
streams are passed to the ASIC (application-specific integrated cir-
cuit) and the MinKNOW software. The raw current measurements 
are compressed into a sequence of ‘events’, each being a mean cur-
rent value with an associated variance and duration (Figure 1F). 
The raw current measurements or the corresponding events, plotted 
over time, are referred to as a ‘squiggle plot’. The base-caller in 
use at this time modelled the characteristics of 45 (= 1,024) pos-
sible 5-mers and base-calling consisted of finding the optimal path 
(Figure 1G) through a Hidden Markov Model (HMM) of successive 
5-mers using a Viterbi algorithm (http://www.bio-itworld.com/
news/02/17/12/Oxford-strikes-first-in-DNA-sequencing-nanopore-
wars.html). The 1D base-calls are inferred separately for the tem-
plate and complement event signals (Figure 1G), the 2D base-calls 
from the event signals from both, and the 1D base-calls are used to 
constrain the 2D base-calls (Figure 1H).

The release of version R7+ flow cells by Oxford Nanopore to the 
MAP community provided highly positive feedback concerning 
both utility and quality of the MinION data. However, it became 
clear that groups were having different degrees of success with the 
MinION, with the possible influencing factors being difficult to 
infer from a single sequencing run. The MARC Phase 1 experi-
ments were designed to assess the yield, accuracy, and reproduc-
ibility of MinION data by undertaking replicate experiments across 
multiple sites, with the intention of identifying technical factors 
important for consistently high performance. To this end, five 
laboratories initially sequenced the same Escherichia coli strain 
K-12 substrain MG1655, in duplicate, using a single shared protocol 
for culture, extraction of high-quality total genomic DNA, library 
preparation and sequencing (File S1). A laboratory E. coli strain 
was chosen as it has a single circular chromosome of 4.6 Mb that 
could be sequenced to sufficient depth in a single MinION run and 
a complete reference sequence is available (NCBI RefSeq NC_
000913). The detailed protocol for sequencing double-stranded 
total genomic DNA was based on the standard protocol from ONT 
at the time the experiment was conceived. During the generation of 
the sequencing data for this work, referred to here as the Phase 1a 
experiments, updates to the ONT sequencing kit and protocol were 
made available (version MN005_1124_revC_02Mar2015, last 
modified 10 June 2015, https://wiki.nanoporetech.com/pages/view-
page.action?pageId=28246488). To ensure this study included data 
from these updates, we generated an equivalent dataset using the 
updated protocol, referred to here as the Phase 1b experiments.
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Figure 1. The Oxford Nanopore sequencing process. (A) Suspended library molecules are concentrated near nanopores embedded in the 
membrane. A voltage applied across the membrane induces a current through the nanopores. (B) Schematic of a library molecule, showing 
dsDNA ligated to a leader adapter pre-loaded with a motor protein and a hairpin adapter pre-loaded with a hairpin protein, and the tethering 
oligos. (C) Sequencing starts from the 5’ end of the leader adapter. The motor protein unwinds the dsDNA allowing single-stranded DNA to 
pass through the pore. (D) A flow cell contains 512 channels (grey), each channel consisting of 4 wells (white). Each well contains a pore 
(blue) and a sensor. At any given time, the device is recording the data stream from the wells of the active well-group, in this example, g1. 
(E) Perturbation in the current across the nanopore is measured 3,000 times per second as ssDNA passes through the nanopore. (F) The 
‘bulk data’ are segmented into discrete ‘events’ of similar consecutive measurements. The 5-mer corresponding to each event is inferred 
using a statistical model. (G) The 1D base-calls are inferred separately for the template and complement event signals. (H) Alignment of the 
2D base-calls from the event signals from both, and the 1D base-calls are used to constrain the 2D base-calls.
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An initial lack of tools for the analysis of data obliged the MAP com-
munity to develop a series of bioinformatics solutions for exploring 
the native FAST5 data (Table S2) produced by the MinION. Pore-
tools (Loman & Quinlan, 2014, https://github.com/arq5x/poretools) 
and poRe (Watson et al., 2015, http://sourceforge.net/projects/
rpore/) are packages for converting and visualising the raw data, 
whereas minoTour (http://minotour.github.io/minoTour) provides 
real-time analysis and control of a sequencing run and post-run ana-
lytics. NanoOK (Leggett et al., 2015, https://documentation.tgac.
ac.uk/display/NANOOK/NanoOK) uses alignment-based methods 
to assess quality, yield, and accuracy of the data. New software 
packages such as marginAlign (Jain et al., 2015, https://github.
com/benedictpaten/marginAlign), NanoCorr (Goodwin et al., 2015, 
http://schatzlab.cshl.edu/data/nanocorr/), Nanopolish (Loman et al.,  
2015, https://github.com/jts/nanopolish/) and PoreSeq (Szalay 
& Golovchenko, 2015, https://github.com/tszalay/poreseq) were 
developed to address the relatively high error rate of the raw data and 
allow genome assembly and error-correction from MinION reads. 
Some of these tools were used for the MARC Phase 1 data analyses.

At the time of this writing, around a dozen reports have emerged 
recounting utility of the MinION for de novo sequencing of viral, 
bacterial, and eukaryotic genomes. The MinION data from this 
study constitute the only resource, to date, of carefully replicated 
experiments across multiple laboratories that can be used to infer 
the volume, quality and reproducibility of data from the platform. 
At the time the Phase 1 experiments were run, extensive preliminary 
analysis revealed clear factors influencing site-to-site reproducibil-
ity and provided inspiration for future MARC experiments in which 
we will explore improvements to the MinION sequencing protocol.

Materials and methods
Each group used the following protocols to obtain total genomic 
DNA from freshly grown cells, fragment the DNA, prepare libraries, 
and sequence the libraries using the MinION. The full methods are 
described in the supplementary information (File S1).

Culture of the E. coli K-12 target sample
To remove variability that might be caused by freeze-thaw of 
genomic DNA and based on previous observations that fresh mate-
rial gave better results, each group worked with freshly prepared 
total genomic DNA from E. coli str. K-12 substr. MG1655 pur-
chased from DSMZ, Germany (https://www.dsmz.de, DSM No. 
18039) on 21 January 2015. On arrival, the E. coli strain was rehy-
drated in LB broth. The rehydrated culture was used to inoculate 
ten replicate 10 mL LB broth tubes and one plate, all of which were 
incubated overnight at 37°C. Following incubation, the plate was 
examined to ensure the culture was pure. Broth cultures were cen-
trifuged at 5,000 × g in a benchtop centrifuge to collect biomass for 
cryogenic bead tube (Protect, Lab M, Lancashire, UK) inoculation. 
Bead tubes were stored at -70°C until they were shipped, at room 
temperature, to four other laboratories (Table S1). Upon arrival, the 
bacterial culture was plated on LB agar, checked for viability and 
purity, and the bead tube stored at -80°C until the sample was ready 
for culture and extraction.

DNA extraction and library preparation
At each participating laboratory, DNA was extracted from approxi-
mately 4 × 109 log-phase cells using QIAGEN Genomic-tip 20/G 

according to the manufacturer’s instructions (QIAGEN, Valencia, 
California). A library was prepared the day after extraction using 
the Genomic DNA Sequencing Kit SQK–MAP005 according to 
the base protocol from Oxford Nanopore (version MN005_1123_
revA_02Mar2015) with slight modifications from the MARC 
consortium (File S1).

In summary, genomic DNA (1 µg and 1.5 µg for the Phase 1a and 1b 
experiments, respectively) was fragmented using Covaris g-TUBE 
(Covaris, Ltd., Brighton, United Kingdom) to achieve a fragment 
distribution with a peak at ~10 Kb (3,300 × g). The sheared DNA 
was pretreated with PreCR Repair Mix (New England Biolabs, 
Ipswich, Massachusetts) to repair possible damage to the DNA 
that could interfere with the sequencing process: since the DNA 
passes through the pore as a single strand, the presence of a nick is 
of particular concern because it would prematurely terminate the 
sequencing of the molecule. To protect the DNA from further dam-
age during the preparation of the library, vortexing was avoided and 
more gentle mixing approaches (i.e., pipetting, inverting, or gentle 
flicking) were used instead. After clean-up with 1× AMPure XP 
beads (Beckman Coulter, Brea, California) to remove PreCR rea-
gents from the sample, the DNA was resuspended in fresh 10 mM 
Tris-HCl pH 8.5, and concentration and fragment size were assessed 
using the Qubit dsDNA BR assay (Life Technologies, Grand Island, 
New York) and the Agilent TapeStation where available (Agilent 
Technologies, Santa Clara, California). In Phase 1a, all remain-
ing genomic DNA was used for the next stage while in Phase 1b, 
which started with 1.5 µg, 1 µg of the genomic DNA remaining at 
this point was used. For most libraries, an internal control DNA 
sequence (‘DNA CS’ from the SQK–MAP005 kit, corresponding 
to the last ~3,555 bases of Enterobacteria phage lambda, RefSeq 
NC_001416.1, with a single mutation G45352A) was added at this 
point. The DNA was then prepared using the NEBNext End Repair 
Module, cleaned with 1× AMPure beads, treated with the NEBNext 
dA-Tailing Module (New England Biolabs) and cleaned again with 
1× AMPure beads prior to ligation.

The final ligation of adapter and hairpin was performed in Protein 
LoBind 1.5 ml tubes (to avoid loss of protein-loaded adapters) with 
Blunt/TA Ligase Master Mix (New England Biolabs) followed 
by a pulldown step using his-tag Dynabeads (Life Technologies). 
Extra care was taken to mix reagents during the ligation and fol-
lowing steps only through careful pipetting, so to avoid unnecessary 
contact of the ligated and protein-bound DNA with the tube walls.

Sequencer configuration and sequencing run conditions
The MinION device is controlled by the MinKNOW™ Software 
Agent on the connected computer. The Metrichor™ Desktop Agent 
manages the connection to the base-calling service in the cloud 
hosted by Metrichor. Installation of the most current version of 
software for both programs at the time of each experiment was 
strictly enforced. Thus, the software versions used to process dif-
ferent experiments were highly correlated with the date on which 
experiments were commenced. While the library was being pre-
pared, the MinION device was made ready for sequencing. A new 
R7.3 flow cell, provided to the MARC Phase 1 laboratories from 
the same lot number, was fastened to the MinION device and the 
MinKNOW Platform QC recipe script was run to assess the number 
of pores in each channel available for sequencing. A minimum of 
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400 g1 channels (of a possible 512) was considered acceptable. At 
the end of the QC, the flow cell was primed/washed twice (File S1, 
steps 79–80) and the sequencing run started after loading the library 
(6 µl for Phase 1a runs or 12 µl for Phase 1b runs). Once the 48-hour 
sequencing recipe script had been initiated, the Metrichor Desktop 
Agent was started and the raw data files were automatically 
uploaded to the Metrichor cloud-based service for base-calling. To 
maximize the yield of higher quality sequence data from the device, 
an additional aliquot of stored library (that had been held at 4°C) 
was loaded at 24h to coincide with the pre-set g1-to-g2 pore switch 
to fresh wells with active pores.

Base-calling and data formats
The output of the MAP_48Hr_Sequencing_Run script is one 
FAST5 file per read. The FAST5 format (File S2) used by Oxford 
Nanopore is a variant of the HDF5 standard (File S2, https://www.
hdfgroup.org) with a hierarchical internal structure designed to 
store the metadata associated with the sequencing of that read and 
the events (aggregated bulk current measurements) pre-processed 
by the MinION (Table S2). The data from each instance of the 
MAP_48Hr_Sequencing_Run script are allocated a ‘run number’ 
(referred to in this study as the ‘batch id’, File S2 Glossary), and 
within this batch, each read is produced by one of the 512 channels 
and numbered by a ‘file number’ starting from zero. The combina-
tion of experiment name, batch, channel and file number is suffi-
cient to uniquely identify a read. During the Phase 1 experiments, a 
128-bit numerical universally-unique identifier (UUID) (https://
tools.ietf.org/html/draft-mealling-uuid-urn-03), represented as a 
32-digit hexadecimal number, was introduced to the FAST5 format 
as an alternate unique identifier for each read.

The FAST5 file for each read is uploaded to the cloud base- 
calling service by the Metrichor agent, base-calls are inferred, the 
read is allocated to a ‘read class’ of either ‘pass’ or ‘fail’ based on 
the criteria used at the time (File S2). All the data in the raw FAST5 
plus additional metadata and the base-calls themselves are pack-
aged into a base-called FAST5 file (Table S2) with a more complex 
internal structure and downloaded to the ‘pass’ or ‘fail’ subfolder of 
the pre-specified ‘downloads’ directory on the client computer. At 
the time the Phase 1 experiments were performed and base-called, 
the read class could only be inferred from the directory in which it 
was deposited by Metrichor.

ENA data pre-processing pipeline
The base-called FAST5 files and associated metadata from each of 
the five labs and 20 experiments were collated on a server at the 
European Nucleotide Archive (ENA, http://www.ebi.ac.uk/ena) and 
run through a bespoke pipeline of pre-processing tools (Table S3). 
The ENA pipeline extracted the 2D base-calls from the base-called 
FAST5 files with poreTools version 0.5.1 (Loman & Quinlan, 
2014), then aligned every read to the E. coli K-12 reference genome 
(NCBI RefSeq Accession NC_000913.1) using BWA-MEM 
version 0.7.12-41044 with the nanopore data parameters ‘-× ont2d’ 
(Li, 2013) and LAST version 460 (Kielbasa et al., 2011). Both the 
BWA-MEM and the LAST alignments were post-processed using 
marginAlign version 0.1 (Jain et al., 2015). Statistics on each of the 
four alignments were computed by SAMtools version 1.2 (Li et al., 
2009), poreMap version 0.1.1 (https://github.com/camilla-ip/poremap), 

marginStats (Jain et al., 2015), and identity version 0.1 (https://
github.com/enasequence/ONT). The number of target, control and 
unclassified reads produced during each experiment was inferred 
by mapping each 2D read to the E. coli and lambda reference 
sequences, then allocating each read to either target or control when 
there was a single significant alignment to the respective genome. 
The remaining reads were recorded as ‘unclassified’ if they mapped 
to both or neither of the possible references. A consensus sequence 
of the nanopore reads mapped to the appropriate E. coli reference 
was inferred by Nanopolish version 0.3.0 (Loman et al., 2015) and 
included with the analyses as part of the data release.

All base-called FAST5 files and the outputs of the ENA pipeline for 
the 20 experiments (Table S10) are available through ENA project 
PRJEB11008 (http://www.ebi.ac.uk/ena/data/view/PRJEB11008).

Data analyses
In this study, we describe the data that match the chronological 
order in which they were generated and processed, from raw events, 
to 1D, then 2D base-calls. We then explored accuracy, at each stage, 
quantifying the data produced under the standard MARC protocol 
and commenting on how variations from that protocol may have 
affected the data yield or accuracy. Preliminary analyses of the data 
relied on summaries and visualisations from the minoTour web-
server (http://minotour.github.io/minoTour), reports generated by 
NanoOK version 0.54 (Leggett et al., 2015), and bespoke Python 
and R scripts. To explore variations over time, each read was 
allocated to the 15 minute interval in which the read commenced 
sequencing, the number of active pores (where an active pore was 
defined as one that was still producing reads), and the read counts 
were converted to number of reads per hour per active pore. Plots 
were generated by allocating the events from each read to the 
appropriate 15 min interval under the assumption that events are 
produced at a steady rate for each read. The percentage of the 512 
active pores in each window was then computed, normalising event 
yield by the number of active pores to derive the event rate in events 
per hour per pore. The median read length in events was computed 
for the reads from each experiment commencing in each 15 min 
interval. Reads generated from the first 1h, between 24 and 25h, 
and the last 1h of the experiments were not shown as the flow cell 
characteristics determining the data generation rate were obscured 
by stochastic effects arising from the initiation, well switching, and 
low active pore numbers toward the end of each experiment. The 
default run script does not attempt to base-call reads with less than 
200 or more than 230,000 events, the arbitrary limits originally 
introduced to limit the memory requirements of the base-caller. To 
reduce noise that would otherwise obscure the underlying degrada-
tion rate of the flow cell chemistry, reads outside the callable length 
range were excluded and although the ‘Basecaller XL’ workflow 
currently available can call reads with up to 1 million events, we 
did not attempt to base-call these extra long reads in this study. The 
final figures, tables, and supplementary material were based on sum-
mary statistics for every read from every experiment generated by 
poreQC version 0.2.10 (https://github.com/camilla-ip/poreqc) and 
poreMap version 0.1.1 (https://github.com/camilla-ip/poremap).

The spike-in of a control sample of known DNA is useful for cali-
brating the accuracy of data from an experiment, especially when a 
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good reference sequence for the target sample is not available. Ide-
ally, sufficient control sample reads would be obtained to perform 
these analyses, but not so many that the yield of target sample is 
significantly diminished. Thus, the proportion of reads that are from 
the target rather than the control sample is another metric that affects 
the usable yield of the MinION. The proportion of target and con-
trol reads in each sample was inferred by NanoOK, which mapped 
each 2D read to the E. coli and lambda reference sequences using 
BWA-MEM ‘-× ont2d’, and classified each read to the genome of 
the primary alignment, or reported the read as ‘unclassified’.

To quantify the error rate of reads produced by the MinION and 
explore the effect that different alignment methods, metrics and 
read types have on the values reported, we produced an error metric 
we refer to as ‘total percent error’ of a read; that is, the percentage 
of a read that is inaccurate due to miscalled bases, inserted bases 
in the read, and deleted bases that are missing from the read but 
present in the reference sequence. The intent of this approach was 
to circumvent alignment-dependent biases that may reduce the 
miscall rate at the expense of insertions and deletions (indels).

Since the accuracy metrics are computed from alignments of base-
calls to the appropriate reference and each alignment method used 
will produce slightly different estimates, we computed the total error, 
and the components, for four alignment strategies: initial alignment 
by BWA-MEM (parameters ‘-× ont2d’) or LAST (parameters ‘-s 2 -T 
0 -Q 0 -a 1’, as recommended by Quick et al., 2014), followed 
by re-alignment with marginAlign (Jain et al., 2015), which uses 
expectation maximization to train an HMM and estimate Maximum 
Likelihood Estimation (MLE) parameters that are, in turn, used to 
infer higher confidence alignments guided by the AMAP objective 
function (Schwartz et al., 2007). The alignment-based calcula-
tions provided by minoTour, NanoOK and poreMap were based on 
BWA-MEM (parameters ‘-× ont2d’). Further data processing was 
performed by bespoke Python scripts and extracts of the data plot-
ted using either bespoke R scripts or minoTour. For clarity, the data 
and algorithm used to derive each figure are described briefly at the 
appropriate point in the Results section.

Sequencing bias of the MinION was explored with the over- and 
under-represented 5-mer table produced by NanoOK. If a plat-
form is capable of sequencing any DNA sequence, all possible 
5-mers in the DNA should be proportionally represented in the data 
when counts are normalized for the distribution of all 5-mers in 
the genome. Thus, the most under-represented and over-represented 
5-mers in the base-calls from the MinION may suggest limitations 
or biases of the nanopore sequencing process. The NanoOK tables 
were computed from a hash table of read k-mer counts generated by 
moving a sliding window of size 5 base-by-base over each FASTQ 
read and counting 5-mers. The relative abundance of each read 
k-mer was calculated by dividing the k-mer count by the total 
number of k-mers in all the reads. Similarly, a hash table of refer-
ence 5-mer counts was generated from the reference sequence. The 
most under-represented 5-mers were deemed to be those with the 
largest difference in relative abundance between the reads and ref-
erence and where the reference abundance was greater than the read 
abundance. The most over-represented 5-mers were deemed to be 
those with the largest difference in relative abundance between the 

reads and the reference and where the read abundance was greater 
than the reference abundance.

Results
Experimental design
A total of 20 experiments (individual flow cell runs) were performed 
in two stages (Phase 1a and 1b) by five laboratories. Experiments 
from Phase 1a and 1b used the SQK–MAP005 and SQK–MAP005.1 
Genomic DNA Sequencing Kits, respectively, which required a 
template mass of 1 µg and 1.5 µg, and library volume of 6 µl and 
12 µl, respectively. Each laboratory (Table S1) undertook two 
identical replicate experiments for each kit version. The 20 experi-
ments are henceforth referred to as P1a-Lab1-R1 to P1b-Lab5-R2, 
following a ‘phase-lab-replicate’ format.

Variation in DNA concentration and template lengths
The Phase 1a and Phase 1b experiments started with an E. coli tem-
plate DNA mass of 1 μg and 1.5 μg, respectively. A fraction was 
lost during each clean up step of the library preparation protocol 
so that after fragmentation, end repair, and dA-tailing, only 17% of 
the Phase 1a and 29% of the Phase 1b starting DNA was retained 
(Table S4). Measurements of the P1a-Lab4-R1 DNA size distribu-
tion revealed a peak at ~15 Kb that subsequently translated into 
a typical read-length distribution, suggesting that the read length 
achieved by the MinION closely resembles the length of the input 
DNA fragments.

Variation in library preparation
Most Phase 1a experiments deviated at least once from the standard 
protocol during the library preparation steps. Variations included 
starting with a higher DNA mass, the suspected addition of an incor-
rect concentration of fuel mix, skipping addition of the DNA CS 
(lambda phage control spike-in sample) DNA, and using a higher 
library volume (Table S5). Phase 1b experiments experienced less 
unplanned variation.

Variability in initial flow cell quality
The number of active pores in each of the four well-groups was 
measured once during the Platform QC (-180 mV) (steps 52-53, 
File S1) before sequencing commenced and at the start of the 48h 
sequencing protocol (-140 mV) (step 87, File S1), and one of these 
measurements was recorded for each flow cell (Table S4). Although 
the numbers reported by the Platform QC are higher than mux num-
bers from the 48H script, possibly due to the different bias voltage 
used by the two scripts, either value gives a good indication of initial 
flow cell quality. The median number of active pores reported across 
the experiments was 484, 409, 262 and 78 for well-groups g1 to g4, 
respectively, which corresponds to 95, 80, 51 and 15% of the theo-
retical maximum of 512 each (Figure 2). The standard sequencing 
protocol only utilizes the first two well-groups during a run. Thus, 
although on average 60% of the 2,048 wells contained an active 
pore, only 44% of all pores in a typical flow cell were available for 
sequencing utilizing the standard sequencing protocol (Figure 2).

Uniformity of sequencing software used during the 
experiments
All Phase 1a and 1b experiments were performed over a period of 
about one month each, between 27 March and 27 April 2015, and 
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between 15 and 21 April 2015 , respectively (Table S6). Compari-
son of the sequencing-related attributes stored in the FAST5 files 
(Table S2) confirmed that most parameters were identical among 
and between the Phase 1a and 1b experiments, the exceptions being 
minor variations in the versions of the MinKNOW and Metrichor 
Desktop Agents, the Oxford Nanopore sequencing protocol and the 
event detection software (Table 1, Table S7).

Variation due to forced restarts of the sequencing protocol 
script
Once started, the MAP_48Hr_Sequencing_Run protocol performs 
a ‘Platform QC’ to allocate active pores to well-groups 1 through to 
4, starts sequencing with the active pores in well-group 1, switches 
to use the active pores in well-group 2 at 24h, and automatically 
terminates at 48h. However, the sequencing protocol was aborted 
or restarted at least once for 5 of the Phase 1a and 3 of the Phase 
1b experiments because: (i) the number of active pores and the 
data yield were so low that the user decided to discontinue the run 
without a restart (N=4); (ii) the sequencing computer crashed 
(N=1); or (iii) the hard drive filled up (N=3) (Table 2, Table S8). 
While the sequencer was being restarted, there was usually a 
period when it was idle, explaining differences between the total 
sequencing time and the total time over which the device was active 
(c.f. seq_duration_hrs and run_duration_hrs, Table S8). In addition, 

Figure 2. Initial active pore count. The distribution of the number of 
active pores (lower series) and the cumulative total (upper series) for 
well-groups 1 to 4 are shown for the 20 flow cells used in this study. 
The measurement for each experiment was made either during the 
Platform QC or at the beginning of the 48h script.

Table 1. Differences in sequencing software across the Phase 1 experiments.

Software Phase 1a version Phase 1b version

MinKNOW 0.49.2.9 0.49.2.9, 0.49.3.7

Metrichor 0.10.0 1.12.1

Protocols 0.49.2.9, 0.49.2.11 0.49.2.11, 0.49.3.7

ONT sequencing workflow 0.10.1 0.10.2

Event detection 0.49.2.9 0.49.2.9, 0.49.3.7

chimaera (analysis software pipelines) 0.10.1 0.12.2

Table 2. Data listing. Adherence to the standard wet-lab protocol for each batch, and the start number and well-group origins of reads 
produced in each experiment.

Phase 1a Phase 1b

Lab1 Lab2 Lab3 Lab4 Lab5 All Lab1 Lab2 Lab3 Lab4 Lab5 All All

R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2

standard 
wet-lab ✔ ✔ ✔ ✔ 4 ✔ ✔ ✔ ✔ ✔ ✔ ✔ 7 11

Start1, g1 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 10 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 10 20

Start1, g2 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 9 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 8 17

Start2, g1 ✔ ✔ ✔ ✔ 4 ✔ ✔ 3 7

Start2, g2 ✔ 1 0 1

Start3, g1 ✔ ✔ 2 ✔ 1 3

Start3, g2 0 ✔ 1 1

Std data ✔ ✔ ✔ 3 ✔ ✔ ✔ ✔ ✔ 5 8

Std data 
>48h ✔ ✔ 2 ✔ ✔ ✔ ✔ 4 6

0

4
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1000
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A
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6 of the 20 sequencing experiments were restarted at 48h (Table 2, 
Table S8) to test whether the device can continue to produce good 
data beyond the standard 48h script provided by Oxford Nanopore, 
but all such data were excluded from this analysis.

Data exclusion
Despite the existence of a detailed standard protocol, a number of 
method deviations were recorded arising variously from wet-lab 
omissions or errors, flow cell quality issues, and computer software 
and hardware issues (Table S5). Thus, we could not use all the data 
generated to infer the yield, accuracy, and variability produced by 
a MinION because of the variations among the 20 experiments 
(Table 2, Table S5). Eleven of the experiments (P1a: N=4; P1b: 
N=7) adhered precisely to the wet-lab component of the stand-
ard MARC protocol; the other 9 contained at least one variation, 
mostly due to uncontrollable factors (Table 2, Table S5). Therefore, 
data was restricted to reads generated during the first execution of 
the MAP_48Hr_Sequencing_Run script (held in common among 
experiments) and those generated under common, near-standard 
conditions. With this strategy, we avoided unusual data accumu-
lation patterns resulting from experiment restarts, which results 
in well swapping via pore reselection (re-mux), while still taking 
advantage of all 20 experiments, even those that terminated before 
48h due to computer failures or flow cell issues. Each start of the 
MAP_48Hr_Sequencing_Run protocol generates one batch of data, 
with up to ½ h being from flow cell calibration and mux pore selec-
tion, the next 24h being from the first well-group pores, and the 
remainder from the second well-group pores. We generated reads 
from the g1 and g2 well-group pores of the first start of 20 and 
17 experiments, respectively. Of the 7 experiments that started the 
sequencing protocol for a second time, 7 generated data from the 
g1 well-group pores and 1 from the g2 well-group pores. Similarly, 
for the 3 experiments that had a third start, 3 experiments generated 
data from the g1 well-group pores and 1 from the g2 well-group 
pores (Table 2).

Temperature regulation of the flow cell
Anecdotal reports from MAP participants have suggested that the 
temperature of the flow cell can affect the performance and data 
quality of the MinION. In our experiments, each flow cell oper-
ated at a characteristic temperature with only minor fluctuations 
over time. All flow cells had an ASIC temperature between 23.9 
and 35.2°C (median 26.8°C) and a heat-sink temperature of 36.8 
to 38.6°C (median 37.0°C). There was no correlation between 
the DNA input mass or fuel amount and the resulting operating 
temperature, and temperatures observed during Phases 1a and 1b 
were similar. The flow cells with the highest yields, P1a-Lab3-R1 
and P1b-Lab4-R1, had ASIC temperatures that spanned the range 
observed (26.9°C and 35.2°C, respectively), suggesting that operat-
ing temperature does not tend to affect data yield.

Total event yield
If the deviations from the established protocol can be considered as 
corresponding to normal variation in use, examination of the total 
data produced by the 20 Phase 1 experiments provides an indication 
of the total yield that can be expected from the current platform. 
We found a high level of variability among the 20 experiments that 
was only partially attributable to protocol deviations: a median of 

60,600 reads (inter-quartile range (IQR) of 38,000 to 74,000, max. 
139,000) (Figure 3A,B) containing 650,000 events (IQR 434,000 to 
750,000, max. 1.9 million) (Figure 3C,D). Very few (~0.2%) of the 
events were in reads that were not base-called by Metrichor because 
they were outside the pre-set callable length range of 200 events to 
230,000 events.

The median read lengths from the 20 experiments indicate most 
experiments had a broad distribution with a peak around 10,700 
events and a long tail containing a very small number of reads that 
reached the upper limit of 230,000 events (Figure 3E,F). Typically, 
a median of 20% of the reads had a length of at least 21,000 events 
(Figure S1A), and 50% of the events were in reads of at least 13,600 
events, 25% of the events were in reads of at least 29,000 events, 
and 5% in reads of at least 56,600 events (Figure S1B). The event 
generation rate was not constant during a sequencing run. Of the 
9 experiments that ran for at least 46h, 67% of the events were 
produced in the first 24h (Figure 4A,B). Although a higher read 
count is associated with a higher event yield (Figure 5A), neither 
the number of reads nor the event yield was strongly correlated 
with the number of active g1 pores (Figure 5B,C), suggesting data 
yield is not solely dependent on the number of initial active pores. 
Although the experiments that followed the MARC wet-lab proto-
col precisely (blue triangles, Figure 5) had a higher event yield to 
read count and higher event yield to initial g1 pore count, the effect 
was not large and does not form a distinguishable cluster among the 
rest of the experiments.

To evaluate whether the variation could be due to deviations from 
the MARC protocol, we examined event data generated by the g1 
pores of the first start of all 20 experiments, all of which ran for at 
least 23 hours. No significant relationship was found between the 
total read count, total event yield or event lengths and the input 
DNA mass (Pearson’s correlation coefficient, p=0.036, 0.221 and 
0.149, respectively). Similarly, the Kruskal-Wallis test found no sig-
nificant difference between the number of reads, total event yield, 
or median event lengths between the Phase 1a and 1b experiments 
(p=0.290, 0.151 and 0.482, respectively), the five labs (p=0.482, 
0.159 and 0.263, respectively), or the 6 experiments that strictly 
adhered to the MARC protocol and the remainder of the experi-
ments (p=0.909, 0.183, and 0.119, respectively).

The highest data yield was from experiment P1a-Lab3-R1, which 
commenced sequencing with the highest number of active g1 
pores (506/512 = 98.8%) to produce over 138 thousand reads and 
almost 2 billion (1×109) events within the callable read length range 
(Table S4, Table S6). The library for this experiment contained a 
DNA input mass of 60 ng in 12 μL of PSM, which was less than the 
median of 70 ng across the 20 experiments (Table S6 Experiments). 
That the two experiments with the highest event yield (P1a-Lab3-R1 
and P1b-Lab4-R1) used a lower mass of input DNA (60 ng and 
9.1 ng, respectively), confirms that the amount of DNA loaded 
is greater than that required to keep the active pores adequately 
supplied with DNA molecules.

Experiment P1a-Lab3-R2 was notable in that it was run for almost 
62h, first for 48h using the standard sequencing script, then for an 
additional 8.1h and 4.8h with two starts of a modification of the 
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Figure 4. Event generation profile. (A,B) Cumulative event yield. (C,D) Event yield per hour. (E,F) Percentage of the 512 pores that were 
active. (G,H) Event sequencing rate per pore. (I,J) Length of reads in events. The left plots show the values for each experiment, coloured 
by lab. The right plots show the values for each experiment more clearly. The DNA input mass for each experiment is provided in (B). Data 
collected during the first hour, the hour following the pore-group switch (24–25h) and the last hour (47–48h) are omitted for clarity.
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MAP_48Hr_Sequencing_Run recipe script, MAP_2×8hrs_180_
190_Sequencing_Run.py that performs a new allocation of wells 
to well-groups (re-mux) (File S2) well selection followed by 8h of 
sequencing at each of -180 mV and -190 mV, respectively (SQK–
MAP005 script developed by John Tyson available to the MAP com-
munity at https://wiki.nanoporetech.com/x/tgLDAQ). During the 
extra 15h, the total accumulated yield increased by 8% (Table S6, 
Table S8), demonstrating that good flow cells can continue to pro-
duce significant amounts of data with the appropriate software.

Event yield profile over time
All experiments demonstrated event accumulation rates that 
decreased for the first 24h, experienced a sharp increase at 24h 
following the pore group switch and library reload, then steadily 
decreased again until the run was terminated (Figure 4A). There 
was no obvious correlation between total yield and input DNA 
(Figure 4B), lab (Figure 4B), or phase (Figure S2). The flow cells 
commenced sequencing at 120–200 × 103 events h-1 (Figure 4G,H). 
Although the experiments generated between 0.2 and 1.2 billion 
events (Figure 4A), a typical run such as P1b-Lab2-R2 generated 
47% of the data (367 million events) in the first quarter (12h) of 
the experiment and 69% of the data (544 million events) in the 
first half (24h) of the experiment (Figure 4B). The rate at which 
events accumulated over time in each experiment was similar 
(Figure 4), suggesting a shared mechanism. The decrease in event 
yield over time (Figure 4C,D) correlates with a decrease in the 
number of active pores (Figure 4E,F). However, the decreasing 
number of pores cannot be the sole determining factor as even 
when normalized for the number of active pores, the event yield still 
declined over time approximately linearly for the first 24h (with 
the exception of P1b-Lab4-R2), then less predictably for the next 
24h (Figure 4G,H). The decrease in event length over time may be 
another contributing factor (Figure 4I,J), but the pore refill delay, or 
the time during which pores are idle, appears constant during a run 
(Figure S3I,J). The sequence of 5-mers inferred from a sequence 
of events may suggest that a base of the library molecule being 

sequenced has been skipped (e.g., a skip of 1 base may be inferred 
from a progression from AATGC to TGCCG) or that a base has been 
sequenced more than once (e.g., a stay may be inferred from con-
secutive 5-mers AATGC and AATGC). While we hypothesized that 
a decrease in events over time may be caused by an increase in skips 
and stays, we observed a decrease in the percentage of template skips 
(Figure S3A,B) but a lower and constant percentage of complement 
skips (Figure S3E,F), and an increase in template and complement 
stays over time (Figure S3C,D,G,H). In conjunction with 4h peri-
odic effects in the plots (e.g., SI Figure 3B, P1a-Lab2-R1/R2), this 
suggests an increasing stay rate, possibly due to non-optimal bias 
voltage across the flow cell membrane, may be a contributing factor 
to the lower event rate observed during an experiment, and this phe-
nomenon would benefit from further investigation. Another point 
to note is that the profiles of experiments produced at the same lab 
are more similar to each other than to experiments from other labs 
(Figure 4 and Figure S3, right side plots), suggesting lab effects or 
the MinION device may be contributing to the effect.

Proportion of target and control sample
Between 63% and 99% (median 92%) of the reads were allocated 
to the target sample and most of the remainder to the control sam-
ple (Figure 6A). Two Phase 1a experiments omitted to include the 
control sample (P1a-Lab3-R1 and P1a-Lab3-R2) (Figure 6A). 
Phase 1b experiments P1b-Lab3-R1 and P1b-Lab3-R2 contained a 
larger proportion of reads (3.7% and 15.3%, respectively) that did 
not map to either the target or the control reference (Figure 6A), 
suggesting contamination. Taxonomic classification of all 2D reads 
using Kraken version 0.10.5-beta (Wood & Salzberg, 2014) found 
only two experiments with non-E. coli bacterial matches: P1b-
Lab3-R1 had 2.3% of the reads classified as Pseudomonadales 
(probably Pseudomonas putida) and P1b-Lab3-R2 had 10.7% of 
reads as Pseudomonales (probably P. putida) and 2.2% as Burkhol-
deriales (best match sp. P. delftia), species implicated in kit con-
tamination (Salter et al., 2014) at percentages comparable to those 
inferred from the BWA-MEM alignments.

Figure 5. Relationship between number of initial g1 pores, read count and event yield. The phase of the experiment is indicated by 
shape. The experiments that adhered to the MARC protocol for both the wet-lab and sequencing components are shown in blue.
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Figure 6. Read yield of target and control samples. (A) Proportion of target, control and unclassified 2D reads for each experiment. The 
read production rate (reads pore-1 h-1) for (B,C) target DNA, (E,F) control DNA, and (F,G) reads that could not be aligned uniquely either to 
the target or control reference sequence.
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With the exception of outlier experiments from P1a-Lab4-R2 (that 
may have been run with extra initial fuel) and P1a-Lab5 (which, 
for reasons unknown, sequenced DNA at a higher rate than in other 
experiments), the proportion of target and control reads decreased 
at a similar rate, suggesting the platform was not biased towards 
either (Figure 6B–E). The increasing rate of unclassifiable reads 
over time (Figure 6F,G) likely reflects decreasing read quality over 
time.

Yield and quality of 1D and 2D base-calls of the target 
sample
The length of events and 2D base-calls of all target reads from all 
experiments had a linear relationship with a slope of 0.367 (ratio 
of 2.7 : 1) (Figure 7A). The median numbers of template, com-
plement, 2D, and 2D ‘pass’ reads across the 20 experiments were 
30,360, 25,370, 19,540 and 12,320 bases, respectively (Figure 7B); 
the median read lengths were 6,280, 5,940, 6,440 and 6,690 bases, 
respectively (Figure 7C); the median base yields were 167, 137, 
115 and 74 million bases, respectively (Figure 7D); the median base 
yield of each type was 167, 138, 115 and 73 million bases, respec-
tively; and the median of mean base quality of the base-calls of each 
type was 7.9, 7.9, 11.2 and 11.9, respectively (Figure 7E).

Not only did the rate of read production decrease over time for all 
1D and 2D reads (Figure S4A–D), all experiments also exhibited 
a declining trend in base quality over time (Figure 8 and Figure 9, 
Figure S4E). The template, complement, and 2D bases differed 

from the start of each sequencing run, having a mean base quality of 
about 2 units less after 24h of sequencing (Figure 8 and Figure 9). 
The increase in the rate of read production (Figure 4) at the 24h 
mux switch was accompanied by an increase in the base quality 
(Figure 8). Every 4h, there was a smaller-scale recapitulation of the 
decline followed by a return in base quality, most clearly seen in the 
P1b-Lab2 experiments (Figure 8 and Figure 9, Figure S4), coincid-
ing with the -5 mV bias-voltage adjustment every 4h in the 48h 
sequencing protocol script (mux1 voltage sequence (mV): -140, 
-145, -150, -155, -160, -165; followed by mux2 voltage sequence 
(mV): -155, -160, -165, -170, -175, -180) to maintain a more 
uniform current flow.

To investigate the interplay between sequencing speed and base 
quality we determined the total time taken to sequence the template 
and complement bases per unit time per active channel. This pro-
vides a measure of the true mean rate that sequences were translo-
cating through the pores. By incorporating the time for which active 
pores were not sequencing, an effective sequencing rate could be 
calculated. For a typical experiment, P1a-Lab2-R2, template and 
complement sequences were produced at a declining rate over the 
course of 24h. For both metrics, the rate at which template sequences 
translocate through the pore decreases more rapidly than the com-
plement sequences (Figure S5A). Plotting the average occupancy 
rate of pores over time, alongside the number of active channels 
over time, demonstrates that active pores continued sequencing 
at similar rates until they become inactive, which happened at a 

Figure 7. Summary of 1D and 2D base-calls. (A) The relationship between event lengths and the length of 2D base-calls is linear, with a 
slope of 0.367 (ratio of 2.7 : 1). The distribution of (B) total number of reads, (C) read length; (D) total base yield; and (E) mean base quality 
of the target sample across the 20 experiments.

Figure 8. Base quality variation over time for 1D and 2D base-calls of the target sample. The median base quality for template, 
complement, all 2D, and 2D pass bases in 15 minute intervals for target DNA reads. Statistics are inferred from data from the first start of each 
sequencing experiment. Data collected during the first hour, the hour following the pore-group switch (24–25h) and the last hour (47–48h) 
are omitted for clarity.
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relatively uniform rate during an experiment (Figure S5B). Thus, 
further investigation of how base quality (Figure 8), read accuracy 
(Figure 10) and the speed at which the DNA translocates through 
the pore (Figure S5) over time may suggest strategies for improving 
base-calling.

Proportion of 2D pass and fail reads
A base-called FAST5 file is classified as ‘fail’ if: (i) base-calling 
failed; (ii) no 2D base-calls were inferred; or (iii) the 2D base-
called read had a mean quality score ≤ 9. All other reads are clas-
sified as ‘pass’ and can be considered the ‘high-quality’ reads from 
the experiment. Although there was substantial variability in the 
proportion of 2D pass reads produced during the experiments, 
there was a clear decrease in median percentage of 2D pass reads 
from 85% to 20% over the course of the first 21h of the experiment 
(Figure 11). The drops in 2D pass yield coincide with the 4h bias-
voltage adjustments (Figure 11), suggesting the reads produced 
during these transition periods do not have correctly calibrated base 
qualities.

Miscall, insertion and deletion rates of 1D and 2D base-
calls
The median total error of all 2D reads was 12% (Figure 10C, 
Figure S8A), with miscalls, insertions and deletions contributing 
3%, 4% and 5%, respectively (Figure 10C). The 2D pass reads had 
a slightly lower total error of 10.5% (Figure 10A) and the 2D fail 
reads a much higher value of 20.7% (Figure 10A), based on the best 
alignment strategy attempted, of BWA-MEM followed by EM cor-
rection by marginAlign. The error estimated from alignments with 
BWA-MEM alone were significantly higher: a median total error 
of 15% for all 2D reads (Figure 10B), 11.6% for 2D pass reads and 
22.6% for 2D fail reads (Figure 10A).

The application of a better alignment algorithm, in this case the EM 
correction implemented in marginAlign, had the effect of decreas-
ing miscalls at the expense of a slight increase in insertions and a 
small increase in deletions, with the net decrease in the total error 
of 1.9% for 2D fail base-calls and 1.1% for 2D pass base-calls 
(Figure 10A). During an experiment, the total error inferred from 

Figure 9. Variation in base quality of 2D and 2D pass base-calls during an experiment. The mean base quality for 15 minute intervals for 
(A) all 2D reads and (B) 2D pass reads in each experiment.
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Figure 10. Effect of EM correction on BWA-MEM alignments of target 2D base-calls. (A) The total percentage error of each read, grouped 
by laboratory, for values computed from BWA-MEM alignments pre- and post-EM correction; (B) the median percentage error over time for 
alignments by BWA-MEM for each experiment; and (C) the median percentage error over time for alignments by BWA-MEM followed by EM 
correction for each experiment, showing the median total, miscall, insertion and deletion error for each 15 minute interval.

BWA-MEM alignments increased during the first 24h of the experi-
ment, dropped at the 24h re-mux and library reload, then increased 
again until the experiment was terminated (Figure 10). Use of a 
better alignment algorithm not only reduced the miscall, insertion, 
and deletion rates, but resulted in a more uniform profile of each 
error type during an experiment, and in particular, reduced the rate 
of increase of deletions during an experiment (Figure 10C). The 4h 
periodic effect observed previously in the base quality plots is also 
clearly evident in the error plots (Figure 10B).

Error rates inferred from the use of the BWA-MEM and LAST as the 
initial aligner were very similar; therefore, only the values based on 
BWA-MEM are described. The error estimates from BWA-MEM, 
pre- and post-EM alignment, were very similar for experimented 
from Phase 1a and 1b (Figure S6). Error estimates inferred from 
BWA-MEM alignments without EM correction showed that the 
error rate of the 1D template and complement base-calls were simi-
lar, and about twice that of the 2D base-calls; and the error of the 
base-calls from pass reads were always lower than for the fail reads 
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of the same read type (Figure S7A). Similarly, the error estimates 
were similar for target and control base-calls across all laboratories 
(Figure S7B). The total percentage error of individual reads, and the 
miscall, insertion and deletion components, were almost constant 
over time, but interrupted by an increase in error for reads that were 
sequenced during the 4h bias-voltage adjustments (Figure S8).

Correlation between base quality and read accuracy
According to the metadata in the FAST5 data files (Table S2), 
the base quality Q is related to the probability of error p by the 
Phred scale formula Q = -1000log

10
(1-p). The linear relationship 

between the logarithm of percentage error and the mean base qual-
ity of 2D reads mapped with BWA-MEM confirms this relationship 
(Figure 12A), thus demonstrating that base quality is correlated 
with the accuracy of base-calls and can be used to filter reads of an 
unknown genome to the accuracy required for a particular analysis. 
We suspect the decrease of 10(-Q/1000)/TotalError over time, a value 
that should be the same for every read, was the result of decreasing 
mean read base qualities during an experiment and the 4h dips in 
the signal were due to the miscalculation of the mean base quality 
of reads that were being sequenced during a bias-voltage adjust-
ment (Figure 12B).

Proportion of base-calls in long reads
One attribute that distinguishes nanopore sequencing from many 
next generation technologies is the possibility of acquiring base-
calls that are over 10,000 bases long. Typically, 7.6%, 4.0%, 4.4%, 
and 3.6% of the reads had over 10,000 bases in the template, com-
plement, 2D, and 2D ‘pass’ base-calls (Figure S1A). Similarly, 
50% of reads had a length of at least 5,500, 5,600, 6,000 and 6,300 
bases for the template, complement, 2D, and 2D ‘pass’ base-calls 
(Figure S1B). Generally, 5% of the reads had a length of at least 
14.5, 13.0, 13.5 and 13.6 × 103 bases for the template, complement, 

2D, and 2D ‘pass’ base-calls (Figure S1B). The longest template, 
complement, 2D, and 2D ‘pass’ base-calls observed in this study 
were 291.6, 300.5, 59.7 and 59.7 × 103 bases, respectively.

Accuracy of consensus sequences
The median theoretical fold coverage of the target E. coli genome 
achieved by the 20 experiments was 25 for 2D reads (min=5.2, 
Q1=16.3, median=24.9, mean=29.0, Q3=36.5, max=78.5) and 16 
if restricted to 2D ‘pass’ reads (min=1.7, Q1=11.3, median=15.9, 
mean=20.3, Q3=27.0, max=47.9). When the theoretical fold cov-
erage of all 2D base-calls or just the 2D ‘pass’ base-calls was at 
least 20, 99.9% of the sites were called accurately by the majority 
consensus. A theoretical fold coverage of at least 60 was required 
to call 99.99% of the reference sites accurately from the majority 
consensus.

GC content 2D base-calls
The GC content of 2D base-calls of the E. coli sample were very 
close to the actual value of 50.8% for all experiments, with some 
variation between the pass and fail base-calls (Figure 13A).

Sequence motifs with lower accuracy
The under-represented 5-mers for the 2D base-calls of the target 
and control samples suggest the nanopore sequencing technology 
has difficulty sequencing homopolymers (Table S9). Homopoly-
mers and repeated bases were also prominent in the table of over-
represented 5-mers, but the mechanism producing this phenomenon 
is not clear (Table S9).

Longest perfect subsequence in 2D base-calls
The length of the longest perfect subsequence in the base-calls of 
each read is a measure of sequencing accuracy. The median length 
in 2D base-calls of the target sample was 50 and 90 for the fail 

Figure 11. Percentage of 2D pass reads produced over time. Boxplots showing the proportion of 2D pass reads started in each 15 minute 
interval were plotted for the 20 experiments (grey), and the median values connected with a black line.
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Figure 12. Relationship between accuracy and base quality. (A) The percentage error (on a log scale) plotted against the mean base 
quality of each 2D read. Reads from the Phase 1a and 1b experiments are distinguished by shape and the pass and fail read types by colour. 
The relationship between total error, and the miscall, insertion and deletion components, are shown separately. The linear regression line 
demonstrates that base quality and error are related by an exponential function. (B) The variation in 10(-Q/1000)/TotalError over time for each 
experiment. Although the value should be constant for all reads, the value declines over time. The characteristic unusual values occurring 
every 4h suggest that base quality is not as well correlated with accuracy for reads that were being sequenced during a bias-voltage 
adjustment.
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and pass base-calls, respectively, across all experiments except 
P1a-Lab4-R2, which may have been run with a higher concentra-
tion of fuel mix (Figure 13B). However, the distribution for all 
experiments had a long tail, the longest exceeding 300 consecutive, 
perfect bases (Figure 13B).

Discussion
The overall objective of MARC is to provide a definitive description 
of the Oxford Nanopore Technologies sequencing platform through 
a flexible publication strategy that accommodates the rapid pace of 
nanopore sequencing technology development. In this first phase 
of the MARC collaboration, we generated 20 datasets at five labo-
ratories on different continents for the same E. coli bacterial strain, 
with sufficient lab replicates to be able to quantify the data yield, 
quality, accuracy and reproducibility that can be expected from the 
MinION, flow cells, chemistry, software and protocols available in 
April 2015. We demonstrated that there was considerable variability 
in the quality of flow cells, but all flow cells that had a high number 
of active pores when they arrived at their destination laboratory pro-
duced data of comparable yield, quality and accuracy. This dataset, 
the largest replicate sequencing effort of its kind on nanopore 
sequencing to date, is published here to allow continued independ-
ent investigation by the broader scientific community and enable 
more rapid development of algorithms and software for these data.

The MARC Phase 1 experiments were designed to provide bench-
mark data that explored the relative contributions of instrument, 
flow cell, laboratory and user to the variation in MinION system 
performance observed by the MAP community. The experiments 
in this study (Table S6) followed a standard protocol based on that 
recommended by Oxford Nanopore at the time of the study, with 
clear choices made for the procedure to be followed when optional 
or open-ended steps existed. The protocol that we followed in 
this study (File S1 MARC protocol) was based on the standard 
SQK-MAP005 protocol provided by Oxford Nanopore (version 
MN005_1124_revC_02Mar2015, last modified 10 June 2015), the 
only amendment being the use of 12 µl of library in Phase 1b and 
annotations to make the protocol clearer.

The large number of replicates allowed us to make generalisa-
tions about the data yield and quality. Utilizing version R7.3 flow 
cells and SQK-MAP005 chemistry, a typical experiment yielded 
115 million 2D bases in ~20,000 reads with a median protocol- 
specific shearing length of 6,500 bases and mean base quality of 
11.2. When the 8 Kb shearing protocol was used, approximately 
4.5% of the 2D reads had a length of at least 10,000 bases, with 
some having a length of over 50,000 bases. Up to 10% of the reads 
of an experiment were from the DNA CS control added during 
library preparation. About 32% of the reads from an experiment 
result in 2D reads from the target genome. The accuracy of base-
calls decreases during the course of an experiment. However, the 
total error of individual 2D base-calls was ~12%, with miscalls, 
insertions and deletions contributing ~3%, ~4% and ~5%, respec-
tively. A single experiment yielded sufficient 2D bases for ~25-fold 
coverage of the target E. coli genome. When restricted to 2D ‘pass’ 
reads, the yield decreased to ~12,000 reads containing 75 million 
bases with a read length distributed centred around 6,700 bases 
and a mean base quality of 11.9. A 2D base yield corresponding 
to at least 20-fold coverage of the target genome was required to 
correctly call 99.90% of the 4.6 Mb E. coli genome, and 60-fold 
coverage to correctly call 99.99% of the genome, from the majority 
consensus of mapped reads.

Although the MARC standard protocol was documented in great 
detail, the quantity and quality of the output data varied due to many 
steps being sensitive to the quality of the materials and reagents 
used, stochastic variation in the application of the steps, accidental 
deviations from the protocol, and unexpected computer failures dur-
ing a sequencing run. A large component of variability in MinION 
data quality was contingent on lab-specific behaviour. Although 
a number of minor deviations from the standard MARC protocol 
occurred, we found that the wet-lab method variations (e.g., DNA 
mass used to prepare a library, sheared length of DNA or the volume 
of library loaded on a flow cell) and occasional failures of compu-
ter software or hardware affected reproducibility but had minimal 
effects on data quality. The one notable exception was the amount 
of fuel mix, where a higher concentration of fuel mix loaded at the 

Figure 13. GC content and best perfect subsequences. The distribution of (A) read GC content as a percentage; and (B) the length of the 
best perfect subsequences of target 2D pass and fail base-calls from each experiment.
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start of run P1a-Lab4-R2 was the most plausible explanation for 
the unusually high sequencing rate, shorter reads and poorer base 
qualities observed. According to Oxford Nanopore, a ‘fast mode’ 
enhancement will soon become available, including fine tuning of 
the event detection parameters to ensure that long read lengths are 
maintained upon addition of more fuel mix to increase speed.

The MinKNOW program, that uses sequencing protocol scripts 
to control the MinION device, was regularly upgraded during the 
study, as was the Metrichor agent that performed base-calling. In 
both instances, sequencing related parameters were similar during 
the period of our investigation. However, local forced restarts of the 
scripts were found to be the largest source of variation among the 
20 runs, resulting in extreme variation in the length of the sequenc-
ing run, event yield and the event generation profiles. Restarts alter 
the specific pores being used for sequencing via mux selection and 
also disrupts a very prescribed bias-voltage profile required for an 
ideal ‘fresh’ flow cell to operate optimally through a 48h sequenc-
ing run. Alteration away from the ‘standard’ experimental condi-
tions can therefore have a large impact on the performance of a flow 
cell, both positive and negative depending on parameters used, and 
confounds comparative analysis.

The performance of the MinION device itself was consistent. Each 
experiment ran at a characteristic temperature within an acceptable 
range that did not fluctuate during an experiment and no experiments 
experienced failures due to problems with the device. Although GC 
biases may be hard to detect through the sequencing of an E. coli 
strain with a mean GC content close to 50%, we did not observe a 
genome-wide GC bias in the 2D reads produced by this platform. 
Neither longer target nor shorter control library molecules were 
sequenced preferentially during the experiments, and the accuracy 
of target and control base-calls was very similar.

The most important determinant of data yield was the initial number 
of active pores in the flow cell. On delivery, ~60% of all the pores 
on the flow cell were usable and the best flow cells had ~95% and 
80% active pores in the g1 and g2 well-groups at the commence-
ment of an experiment. Active pores were sequencing for ~90% 
of their active time, with a uniform idle period between library 
molecules suggesting pores have consistent performance until they 
become inactive. The first hour of a run is generally predictive of 
total run yield. Flow cells that commenced sequencing with at least 
400 of the maximum of 512 well-group g1 pores yielded optimal 
event yield profiles from high quality libraries.

The similarity of the 2D base quality profiles from the same lab 
suggest the base quality of an experiment may be dependent on the 
characteristic human or equipment-related sequencing conditions 
in a laboratory. But it is also possible that it may be due to the ship-
ping procedure to that location. Thus, the reason for the decrease 
in base-call accuracy during an experiment is still not fully under-
stood, but the large number of replicate experiments in this study, 
carried out in five laboratories on different continents, is the best 
available resource for exploring the possible mechanisms. The char-
acteristic trend observed for all metrics of data quality produced by 
the current group of pores was a steady decrease over time, punc-
tuated by a fluctuation every 4h coinciding with the pre-set bias- 
voltage adjustment. We hypothesize that variations in sequencing 

rate (measured in bases per second) were caused by decreasing flow 
cell performance over time that is not accounted for in the base- 
calling models. The adjustments in bias voltage every 4h appear to 
mitigate some of these effects, but the frequency of these adjust-
ments do not track the changing state of the flow cell closely enough 
to result in uniform data quality during an entire experiment. This 
suggests the pre-programmed bias-voltage adjustments have been 
optimized for the library preparation protocol recommended for that 
flow cell chemistry, and the particular volumes of library and fuel 
expected during the sequencing run. As such, software or protocols 
that could maintain synchrony between these two aspects of the 
sequencing process may significantly improve the overall perform-
ance of the technology and confirm that re-calling bases of older 
experiments with new software is probably not advisable.

The addition of more library and fuel mix coincided with the switch 
from the use of the g1 to g2 pores, so it was not possible to tell 
which of the two factors was responsible for any changes in data 
yield or quality, or whether the lower overall performance in the 
second 24h period of the experiment may have been due to deg-
radation of the DNA, adapters or motor proteins during 24h of 
storage. However, the increase in read production rate (Figure 4), 
and quality after the 24h mux switch suggest ‘fresh’ pores and/or 
sample produce higher quality data (Figure 8). Given that the base- 
calling algorithm is tuned to use normalized current profiles, ‘mid’-
read bias-voltage changes would compromise this process and we 
hypothesize it causes a disproportionate decrease in the quality of 
the base-calls for a short transition period until complete reads are 
produced under the same ionic driving force. The similarity of the 
2D base quality profiles from the same lab suggest the base quality 
of an experiment may be dependent on the characteristic human or 
equipment-related sequencing conditions in a laboratory (Figure 9). 
The two Phase 1a and 1b replicate experiments performed in Lab 2 
and Lab 5 were run concurrently on different MinIONs while all 
other laboratories performed the replicate experiments sequentially 
(Table S8). The 2D plots for replicate experiments from these two 
labs are the only pairs of experiments that have a different rate of 
decrease, which suggests the MinION itself has some influence on 
the decrease in base quality over time (Figure 9A).

Finding standard metrics for assessing the error of the long single-
molecule reads was a challenge. Alignment-free approaches based 
on k-mer frequencies have lower accuracy for homopolymeric 
regions or those with a low or high GC content (Laehnemann et al., 
2015). If a platform is capable of sequencing any DNA sequence, 
all possible 5-mers in the DNA should be proportionally represented 
in the data when counts are normalized for the distribution of all 
5-mers in the genome. Thus, the most under-represented and over-
represented 5-mers in the base-calls from the MinION may suggest 
limitations or biases of the nanopore sequencing process. Con-
versely, using alignment-based approaches, we have observed that 
stretches of 90 perfect bases in 2D ‘pass’ reads and 50 bases in 2D 
‘fail’ reads were typical (Table S9), and that stretches of over 300 
perfect bases were possible from the SQK-MAP005 chemistry. The 
accuracy (or error) values quoted in other studies have been dif-
ficult to compare because: (i) the precise values quoted are sensitive 
to the alignment method used to compare reads to the reference; 
(ii) there is a significant difference in the quality of the 2D ‘fail’ 
and ‘pass’ reads; and (iii) basing values on reads from both target 
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and control DNA may affect the values if they have different GC 
contents. Quoting the percent identity of a read with respect to a ref-
erence can be misleading because an increase in the percent identity 
can be induced by a decreased rate of insertions or deletions. We 
found that the total error of 2D ‘fail’ and ‘pass’ reads was 23% and 
12%, respectively, using the nanopore-tuned parameters for BWA-
MEM, but re-alignment using an EM technique reduced the error 
to 21% and 12%, respectively. In fact, we expected error rates to 
differ between phases (due to different chemistries) and samples 
(due to different types of input DNA), but instead the only observed 
error rate differences were between the type of read (template/
complement/2D) and whether or not it had been classified as pass 
or fail. Although the error of individual MinION reads is high com-
pared to those from the more established short-read technologies, it 
has been demonstrated that these data are of sufficiently high-quality 
to infer full-length de novo assembly of the E. coli, Influenza virus, 
and Saccharomyces cerevisiae genomes (Goodwin et al., 2015; 
Loman et al., 2015; Quick et al., 2014; Wang et al., 2015).

Although reported, the 1D reads were not fully explored and it is 
acknowledged that discounting these data likely underestimates 
error and reduces usable data. If there are regions of the target 
genome that only have coverage by template base-calls, the demon-
strated correlation of mean base quality and accuracy could be used 
to select the more accurate 1D reads that exceed an appropriate base 
quality threshold.

The observations from this study suggest there are many ways in 
which the performance of the MinION platform could be improved. 
Clearer protocol steps, that describe software steps, could reduce 
mistakes and computer issues. Methods that deliver longer, intact 
library molecules to the flow cell would have a large impact on the 
length distribution of the resulting base-calls. Improved run scripts, 
that utilize the best available pore for each channel rather than rely-
ing on pre-defined well-groups, could dramatically increase data 
yield and quality. Improvements in base-call accuracy through 
finer-grained regulation of bias-voltage adjustments may be pos-
sible, but these would need to be accompanied by more accurate 
mean base qualities for reads that span voltage transitions. Yield of 
the target sequence could be improved by reducing the volume of 
the control sample in the library. Investigation of motifs that have 
no coverage in the 2D base-calls may suggest a means of alleviating 
these limitations. Development of base-calling algorithms that take 
into account the methylation profile of the target DNA could reduce 
the regions of the genome that are consistently unrecovered by the 
current technology. The lifetime of a flow cell is not limited to 48h, 
and this study demonstrates that significant amounts of additional 
data can be generated if sufficient active pores remain.

The data generated in this study are intended as a snapshot of the 
state of the MinION technology in April 2015. There are many 
other analyses that could have been presented here, but to release 
the datasets to the wider community rapidly, we have deliberately 
performed only preliminary analyses and hope the release of these 
datasets will inspire the development of software based on new 
algorithms that specifically address the unique properties of data 
from the MinION platform. We hope that more analyses will be 
performed on this dataset both by MARC members and others. 

During Phase 1 of the MARC collaboration, new minor versions 
of the flow cell chemistry and software were released, and the first 
‘field’ runs of the new MinION Mk1 device with the new flow cells 
using SQK–MAP006 reagents and updated base-calling software 
based on 6-mers commenced in late September 2015. To provide a 
link between the data presented in this study and the MinION Mk1 
data, MARC will conduct ‘bridging experiments’ to evaluate the 
differences in the data yield and accuracy and error profile, before 
embarking on the MARC Phase 2 experiments to identify protocol 
changes that improve the performance and extend potential applica-
tions of the platform.

Data availability
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Supplementary figures 

Figure S1. Proportion of long reads and data in long reads. (A) The percentage of reads with a length greater than a specified read length. 
A boxplot of the percentage of reads was plotted for each read in multiples of 1000 until the read percentage dropped to 1%. Typically, 
21% of the reads had a length of over 20,000 events, and 7.6%, 4.0%, 4.4% and 3.6% of the reads had over 10,000 bases in the template, 
complement, 2D and 2D ‘pass’ base-calls. (B) The length of reads containing a specified percentage of the data. Typically, 50% of the reads 
had a length of at least 13,600 events, and 5,500, 5,600, 6,000 and 6,300 bases for the template, complement, 2D and 2D ‘pass’ base-calls. 
Similarly, 5% of the reads had a length of at least 56,600 events, and 14,500, 13,000, 13,500 and 13,600 bases for the template, complement, 
2D and 2D ‘pass’ base-calls.
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Figure S2. Cumulative event yield over time by phase. The cumulative event yield was plotted for all reads from each experiment and 
coloured by the experimental phase. The yield for each phase has not affected the rate of event production over time or the total events 
produced. The total yield was not dependent on the input DNA mass (for input DNA mass, see SI Table 4). The re-mux and library reload at 
24h is shown by a vertical dashed line.
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Figure S3. Additional factors affecting event yield over time. (A,B) Percentage of template events that are skips (i.e., event moves 
with a step length > 1). (C,D) Percentage of template events that are stays (i.e., event moves with a step length = 0). (E,F) Percentage of 
complement events that are skips (i.e., event moves with a step length > 1). (G,H) Percentage of complement events that are stays (i.e., 
event moves with a step length = 0). (I,J) Mean number of minutes that a pore is idle between sequencing instances. The number of skip 
and stay events was inferred for the template and complement strands of each reads and allocated to the 15 minute interval since the start of 
the experiment. The refill plot was based on values computed with poreQC version 0.2.10. The number of seconds the pore was idle before 
sequencing commenced was computed for each read, excluding the first read and any read which followed a read which did not result in 
a valid set of events, allocated to the 15 minute window in which the read commenced, grouped by experiment, and the median plotted for 
each experiment. Only data for the first sequencing script start is shown. The first hour, the hour following the pore-group switch and the last 
hour, are not shown for clarity. The 24h re-mux and library reload is shown by a vertical dashed line.

Page 24 of 35

F1000Research 2015, 4:1075 Last updated: 19 JAN 2016



Figure S4. Yield and quality of 1D and 2D base-calls over time. Each row shows (A) read count, (B) read count per pore per hour, (C) base 
yield, (D) base yield per pore per hour, and (E) base quality for 1D template and complement reads, 2D reads and the 2D ‘pass’ reads. The 
values were inferred from the statistics computed by poreQC version 0.2.10 and poreMap version 0.1.1. Only data for the first sequencing 
script start is shown. The first hour, the hour following the pore-group switch and the last hour, are not shown for clarity. The 24h re-mux and 
library reload time is shown by a vertical dashed line.
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Figure S5. Sequencing rate and pore occupancy rate for a typical experiment. (A) Mean read sequencing rate of the template (light 
blue) and complement bespoke (green) strands, measured in bases per second, for each 15 minute interval for experiment P1a-Lab2-R2. 
The effective sequencing rate, computed as the total time taken to sequence bases the template and complement bases, per unit time, per 
active channel are shown for the template (orange) and complement (dark blue) for the same 15 minute intervals. In a typical experiment like 
P1a-Lab2-R2, template and complement sequences were produced at a declining rate over the course of 24h, and for both metrics, the rate 
at which template sequences translocate through the pore decreases more rapidly than the complement sequences. (B) The percentage 
of time that active pores were occupied (blue, left axis) and the number of active channels across the device (orange, right axis, maximum 
of 512), for 15 minute intervals during experiment P1a-Lab2-R2. Active pores continued to produce data at a similar rate until they became 
inactive, which happened at a relatively uniform rate during an experiment.
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Figure S6. Error estimates for target 2D base-calls from each phase. The pre- and post-EM percentage error for BWA-MEM alignments of 
target 2D base-calls, grouped by phase. There was little difference between the error rate of Phase 1a and 1b experiments.

Figure S7. Variation in base-call error across read types and DNA source. The total error, and the contribution of miscalls, insertions and 
deletions for 2D base-calls of target reads for (A) template, complement and 2D base-calls split by the pass and fail classification, and (B) 
samples from the target or control DNA, grouped by laboratory. The percentage error was estimated from BWA-MEM alignments without EM 
correction, and thus, higher than the corresponding values in Figure 10. However, these values are sufficient to show that the error rate of 
the 1D template and complement base-calls are similar, and about twice that of the 2D base-calls. And the error of the base-calls from pass 
reads are always lower than for the fail reads of the same read type. Similarly, the error estimates were similar for target and control base-calls 
across all laboratories.
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Figure S8. Variation in miscall, insertion and deletion error over time for 2D base-calls. These data are the same as shown in Figure 10C, 
inferred from BWA-MEM alignments followed by EM correction, but separated by phase and lab to more clearly show the trends over time for 
each experiment. The total percentage error of individual reads, and the miscall, insertion and deletion components, were almost constant 
over time, but interrupted by an increase in error for reads that were sequenced during the 4h bias-voltage adjustments.
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Supplementary tables 

Table S1. Laboratories.

Table S2. FAST5 format.

Table S3. ENA pipeline.

Table S4. Lab metadata.

Table S5. Variations to MARC protocol.

Table S6. Experiments.

Table S7. Software parameters.

Table S8. Batch metadata.

Table S9. Under- and over-represented 5-mers in 2D base-calls.

Table S10. ENA accessions.
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This manuscript produced by the MARC consortium is an impressively comprehensive study of run-level
performance of the Oxford Nanopore MinION. The consortium have decided to focus on tightly defined
parameters by sequencing a single bacterial strain, Escherichia coli K-12 MG1655, using a specific library
preparation protocol and identical run parameters. Although some minor variability following the standard
protocol between labs was observed, this is unlikely to affect the results.

It therefore provides the most extensive view of platform performance variability to date, focusing on a
specific combination of library preparation chemistry (SQK-MAP-005) and flow cell type (R7.3). Its
strengths are therefore in the emphasis on platform reproducibility. 

There are a few extra things that could have been done to make the results more akin to user
experiences, such as not pre-filtering flow cells for those with >400 group 1 pores, but this is not a
significant issue, but it would be nice to see a spread of performance of all tested flow cells. The
performance reported is in line with our own experiences.

For me, the most interesting/useful elements of the paper were:
 

the generally consistent results in terms of data quality achieved by different labs
 
the extensive variability in throughput between flow cells which all give good QC (g1>400) values,
suggesting that the QC stage is not a particularly reliable estimate of how well a flow cell will run
 
Figure 1, which provides a useful summary figure (although please note caveats below)
 
the close attention to detail to alignment methodologies
 
the relationship between experiment run time, throughput and read quality, which suggest that a 48
hour workflow is not optimal, and pores should be remixed more frequently

A frustration is that the underlying reasons for the variability in performance, with the exception of
operational issues, are not really explained and therefore these results do not really help users plan how
to mitigate the variability. This is not the authors fault but remains an issue for those planning experiments
that require a particular yield.

My major criticism is that the paper is over long and would have benefited from a good editor to try and
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My major criticism is that the paper is over long and would have benefited from a good editor to try and
reduce excessive verbiage. Sentences are often laborious and there is significant repetition throughout
the manuscript. To pick on the first sentence of the manuscript: “the advent of a miniaturized DNA
sequencing device with a high-throughput contextual sequencing capacity embodies the next generation
of large scale sequencing tools”. This is fairly garbled. What is “contextual sequencing capacity”. And why
does it “embody the next generation of large scale sequencing tools” ? A few hours with a proof reader
would do wonders. Greater use of active voice would improve readability. But it is up to the authors to
decide whether they want to spend more time revising the manuscript in this manner.

Generally I am happy with the manuscript to be approved as it is but I would suggest addressing a few
technical points:

Figure 1. I could not figure out panels G or H easily. I could not figure out the relationship between the
k-mers relating to each strand, they did not obviously seem to match up or be reverse complements of
each other. Panel H I also cannot figure out how the 2D consensus sequence relates to the 1D reads. For
example, why is there an insertion in the 2D sequence which does not have a corresponding alignment in
the 1D?

In the section relating to the consensus sequences, the method seems to suggest that nanopolish was
used to create a consensus sequence, using the reference sequence as the input alignment? I am not
sure this is a particularly meaningful process. Accuracy measures like this (and any reference based
alignment) are likely to be skewed by ‘reference attraction’, particularly given the alignment settings used -
a pure assembly may have been a more robust measurement. If that is too much work, the data de novo 
could have been used (separately, or in combination) to polish the assembly from the nanopolish paper.

I wish the analysis had not made so much of the (ad hoc) separation of 2D pass and fail reads. In reality
reads are in a continuum of quality and the pass filter is simply defined by the Metrichor workflow, which is
presumably version dependent (and can be turned off). At the least a definition of the pass filter would be
useful, from figure 12 it looks like it relates to a Q value of around 10. A detailed treatment of the “usability”
of 2D pass versus 2D fail reads is missing, but this is probably out of scope in the paper.

One laboratory, Lab 3 reported high levels of Pseudomonas contamination. Although reagent
contamination is a possibility, these very high levels are very unlikely to be due to vendor reagent
contamination. Had this laboratory specifically handled P. putida in the recent past?

Minor nitpicking points:

Inconsistent use of trademarks e.g. MinION(TM), MinION in two contiguous sentences.

AGBT 2012 presentation has been posted in the F1000 channel and can be referenced.

“beta-testing” - is this formally defined or vernacular?

It is not clear how much of the description of the chemistry is informed guessing, based on company
materials or from unpublished communications, it would be nice to clarify what is a definitive statement
and what is speculative. Along that line, I did not realise that tethers are on both strand, is that definitely
true? 

512 channels - this nomenclature is confusing, especially when compared to ‘wells’. Could this be

clarified as to what a channel is?
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1.  

2.  

3.  

4.  

clarified as to what a channel is?

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 I am a member of the MinION Access Programme. I have an existing researchCompeting Interests:
collaboration with Oxford Nanopore which is not financially compensated. I have received flow cells free
of charge as part of the MinION Access Programme (MAP). I have received an honorarium to speak at a
company organised meeting, and received travel and accommodation expenses to attend the London
Calling meeting. I have participated in a meeting of the MARC consortium but was not involved in the
experiments detailed here or preparation of the manuscript.

 04 November 2015Referee Report

doi:10.5256/f1000research.7757.r10824

,  Michael Quail Louise Aigrain
Sequencing R&D, Wellcome Trust Sanger Institute, Cambridge, UK

The article supplied by the Minion Analysis and Reference Consortium is very thorough and a study that is
worthy of indexation.

It is however outdated as the technology is moving so fast and few of the findings (aside from the
description of alignment tools) are likely to be of much practical use to users. 

That said this is a useful study that is very worthy of indexation and will gain widespread interest.

I would recommend indexation (though it is already out there and has already been read by those
interested) subject to the following revisions:

The authors introduce nanopore sequencing at the start of the introduction and should mention
Nanopore sequencing technologies and approaches other than ONT e.g Noblegen, Genia,
INanoBio, etc.
 
In paragraph 2 of the introduction the author say "a library is constructed from double-stranded
DNA (dsDNA) with a protocol similar to that used for short-read, second-generation platforms" yet
the library prep is more similar to that used by PacBio. Perhaps they should say "a library is
constructed from double-stranded DNA (dsDNA) with a protocol similar to that used for other NGS
platforms"
 
At the end of paragraph 2 of the introduction the authors say "Each channel provides data from one
of the four wells at a time, the order of use defined by the allocation of wells to well-groups during
an initial ‘mux scan’ (File S2 Glossary), allowing up to 512 independent DNA molecules to
be sequenced simultaneously". I'm not sure that someone who hasn't used a MinION would
understand what the MuxScan is and that it's an algorithm choosing towards which of the 4
surrounding pores each channel should point. The text should be modified to explain this better.
 
Paragraph 3 of introduction. Here the authors should make it clear that base calling doesn't take
place on the computer connected to the MinION itself but can still be done while data is being

acquired.
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acquired.
 
Paragraph 3 of introduction. The authors claim that "a single circular chromosome of 4.6 Mb
that could be sequenced to sufficient depth in a single MinION run and a complete reference
sequence is available". This is only true if a good flowcell with sufficient active pores is obtained.
This should be made clear and the authors should declare how many flowcells they or ONT
screened in order to get enough flowcells with sufficient active pores.
 
In figure 1 the authors should make it clear that the blue bar is the membrane.
 
At the start of page 6 in the section "Sequencer configuration and sequencing run conditions" the
authors say that a minimum of 400 g1 channels was considered acceptable. This was actually a
rare event with the minION versions the authors describe but is more consistent now. The authors
should note that this threshold isn't always met and is one of the major factors in variability in data
yield.
 
page 6, "Data Analyses section". The authors assume that that events are produced at a steady
rate yet no evidence is given for this. As this is contrary to data given in ONT company
presentation which show that dwell time per base is stochastic the authors need to show that this
assumption is correct.
 
page 6, "Data Analyses section". The authors say that they do not show reads generated during
the first hour are not shown due to various effects. Yet almost a quarter of the reads are generated
during this hour. If the authors are saying that reads during this period are substandard and not
usable then they should say so. If they are usable then they should analyse them.
 
page 7. results. The authors should say how many flowcells were tested and what % passed the
400 pore minimum threshold.
 
Page 9. "Total event yield". The authors conclude "suggesting data yield is not solely dependent on
the number of initial active pores." They should include another possibility, the way ONT measure
the number of active pores may not be accurate.
 
Page 14. When talking about base quality the authors should state that this is a Q score.
 
Page 15. "Proportion of 2D pass and fail reads". Users are interested in the overall proportion of
passed reads not just the proportion during the first 21 hours. The overall proportion should be
stated.
 
Page 17. The authors stated that error estimates are similar for target and control base-calls. They
should however point out that E.coli is a neutral GC genome similar to phiX and that other
genomes with different base compositions have been reported to give a different error estimate to
the lambda control.
 
Page 17. "Correlation between base quality and read accuracy". Because there are so many
events on figure 12 A it is impossible to establish if there is really a linear relationship, a gradient of
colour intensifying where dots are overlapping would help the reader to see if it's really linear or just
all over the place.
 

page 17. The authors state "A theoretical fold coverage of at least 60 was required to call 99.99%
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page 17. The authors state "A theoretical fold coverage of at least 60 was required to call 99.99%
of the reference sites accurately from the majority consensus." This is 4 flowcells worth of
sequence yet the authors claim a single flowcell to be sufficient in the introduction.
 
page 17. In discussing "Sequence motifs with lower accuracy" the authors should also highlight the
fact that homopolymers >5 cannot be resolved and are reported as 5 mers.
 
page 19. In the discussion the authors say "We demonstrated that there was considerable
variability in the quality of flow cells" Some figures would be useful here.
 
page 19. In the discussion the authors say "About 32% of the reads from an experiment result in
2D reads from the target genome." They should also state the percentage of 2D pass reads
 
page 19. In the discussion the authors say "When restricted to 2D ‘pass’ reads, the yield
decreased to ~12,000 reads containing 75 million bases with a read length distributed centred
around 6,700 bases and a mean base quality of 11.9." To put this in context with the previous
sentence the authors should state the level of genome coverage that this achieved.
 
page 20. Regarding fast mode. This is already available and giving superior quality data. Thus
illustrating whether or not such a consortium can keep up other than perhaps on a blog?
 
page 20. The authors say "Although GC biases may be hard to detect through the sequencing of
an E. coli strain with a mean GC content close to 50%, we did not observe a genome-wide GC bias
in the 2D reads produced by this platform." In this context they should quote whoGoodwin et al. 
report results from a non-base biased genome, Lver et al.
 
Page 20. The authors say "which suggests the MinION itself has some influence on the decrease
in base quality over time". Do they mean the minON or the flowcell.
 
Page 21. The authors compare ONT error rates with short read technologies. They should also
compare error rate and error profile with PacBio as this is also a long read technology and users
would be more interested in that comparison.

We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard.
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